Nonius (1998). Kappa-CCD Reference Manual. Nonius BV, Delft, Les Pays-Bas.
Saba, A. (1996). Thèse d'état des Sciences Physiques, Ouagadougou, Burkina Faso.
Saba, A., Sib, F. S., Faure, R., Aycard, J. P. (1996). Spectrosc. Lett. 29, 1649-1657.
Schenkenburger, J. (1965). Arch. Pharm. (Paris), 298, 411-423.
Waasmaier, D. \& Kirfel, A. (1995). Acta Cryst. A51, 416-431.

Acta Cryst. (1999). C55, 1593-1595

Bis(1,3-dioxan-2-yl)arenes: precursors to linked porphyrins

Paul G. Jene and James A. Ibers
Department of Chemistry, Northwestern University, 2145
Sheridan Rd, Evanston, IL 60208-3113, USA. E-mail: ibers@chem.nwu.edu

(Received 26 February 1999; accepted 8 June 1999)

Abstract

The crystal structures of two linked-porphyrin precursors have been determined. In the crystalline state, 1,4-bis[2-(1,3-dioxan-2-yl)phenyl]butane, $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4}$, (I), exists in a stair-like conformation with dioxane rings in chair conformations. The molecule is positioned on an inversion center. In the crystalline state, 1,2-bis(1,3-dioxan-2-yl)benzene, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$, (II), is arranged in zigzag chains. In each chain, molecules of (II) are tilted $106.2(1)^{\circ}$ relative to each other. They are also oriented to form a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contact ($\mathrm{H} \cdots \mathrm{O} 2.43 \AA$).

Comment

Considerable effort (Kadish et al., 1998, and references therein) has been devoted to model systems, especially linked porphyrins, for photosynthetic reaction centers for Rhodopseudomonas viridis and Rhodobactersphaeroides (Clement et al., 1998). The crystal structures of two precursors for diporphyrin systems are detailed here, namely 1,4 -bis[2-(1,3-dioxan-2-yl)phenyl]butane, (I), and 1,2-bis(1,3-dioxan-2-yl)benzene, (II). The syntheses of compounds of this type have been published previously (Sessler et al., 1990).

(I)

(II)

Compound (I) (Fig. 1) is a precursor for a flexibly connected diporphyrin system, 1,4-diporphyrinpropane. Selected geometrical data are given in Table 1. The molecule sits on an inversion center. The benzene ring is planar with a maximum deviation from its mean plane of 0.0022 (14) \AA for atom C5. The two benzene rings are parallel by symmetry. These rings are separated by 8.96 (1) \AA, measured from the centroid of each ring. Since the $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$ torsion angle is $101.2(2)^{\circ}$ and the $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8^{\prime}$ torsion angle is -175.1 (2) ${ }^{\circ}$, the overall conformation is stair-like. Molecules stack in an offset manner. The distance between equivalent benzene rings in neighboring molecules is 4.69 (1) \AA. Closest contacts are $\mathrm{H} \cdots \mathrm{H}$ non-bonded interactions between the propyl arms of adjacent molecules. The dioxane rings assume chair conformations.

Fig. 1. The structure of compound (I). Symmetry-generated atoms are shown without labels. Displacement ellipsoids are shown at the 50% probability level.

Compound (II) (Fig. 2) is a precursor for the rigidly connected system o-diporphyrinbenzene. In Table 2, similar bond lengths and angles are listed in pairs. The benzene ring is planar with a maximum deviation from its mean plane of 0.0037 (17) \AA for atom C5. The two dioxane rings adopt chair conformations. The orientation of the dioxane rings does not seem to be determined by inter-ring contacts. The shortest atom-to-atom distance is $2.32 \AA$ between H7A of one ring and H11A of the other ring. Molecules of (II) are tilted 106.2 (1) \AA relative to each other (measured as the dihedral angle between mean benzene planes of adjacent molecules). There is a close interaction ($\mathrm{H} 4 \mathrm{~A} \cdots \mathrm{O} 2=$ $2.43 \AA$) between molecules at (x, y, z) and ($x, 1-y$, $-\frac{1}{2}+z$). The fixed C4-H4A distance is $0.95 \AA$, the $\mathrm{C} 4 \cdots \mathrm{O}$ distance is 3.354 (3) \AA and the $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A} \cdots \mathrm{O} 2$ angle is 164.8°. In the crystal structure, molecules of (II) form zigzag chains seemingly determined by this contact. The acetal $\mathrm{C}-\mathrm{O}$ bond lengths in (I) and (II) are
equal within experimental error [average 1.415 (6) Å]. This is consistent with the lack of hydrogen bonds to the acetal O atoms (Gandour et al., 1986). These $\mathrm{C}-\mathrm{O}$ bonds average $1.407(10) \AA$ in other reported unsubstituted (2,6-dioxahexyl)arenes (Gandour et al., 1986; De \& Kitagawa, 1991). Both in those compounds and in the present study, the 2,6-dioxahexyl rings have the chair conformation.

Fig. 2. The structure of compound (II). Displacement ellipsoids are shown at the 50% probability level.

Experimental

Both precursor compounds may be prepared by standard synthetic techniques. However, the complete diporphyrin syntheses are demanding and are described elsewhere in detail (Sessler et al., 1990, and references therein).

Compound (I)

Crystal data
$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4}$
$M_{r}=382.48$
Monoclinic
$P 2_{1} / c$
$a=13.979(3) \AA$
$b=4.689$ (1) \AA
$c=16.239(3) \AA$
$\beta=107.279(4)^{\circ}$
$V=1016.5(3) \AA^{3}$
$Z=2$
$D_{x}=1.250 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Bruker SMART-1000 CCD diffractometer

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 1032 reflections
$\theta=1.53-25.50^{\circ}$
$\mu=0.084 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Square prism
$0.42 \times 0.05 \times 0.05 \mathrm{~mm}$ Colorless

$$
\begin{aligned}
& 982 \text { reflections with } \\
& \quad I>2 \sigma(I)
\end{aligned}
$$

ω scans	$R_{\text {int }}=0.052$
Absorption correction:	$\theta_{\max }=25.50^{\circ}$
\quad face-indexed numerical	$h=-16 \rightarrow 16$
(Sheldrick, 1997)	$k=-5 \rightarrow 5$
$T_{\text {min }}=0.979, T_{\text {max }}=0.997$	$l=-13 \rightarrow 19$

5153 measured reflections 1887 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.090$
$S=0.81$
1887 reflections
127 parameters
H atoms: see below
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.15$ e \AA^{-3}
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)\right.$ $\left.+\left(0.0375 F_{o}^{2}\right)^{2}\right]$

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (I)

$\mathrm{C} 6-\mathrm{C} 7$	$1.511(3)$	$\mathrm{C} 10-\mathrm{O} 1$	$1.434(2)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.534(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.510(3)$
$\mathrm{C} 8-\mathrm{C} 8$	$1.515(4)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.511(3)$
$\mathrm{C} 9-\mathrm{O} 1$	$1.411(2)$	$\mathrm{C} 12-\mathrm{O} 2$	$1.437(2)$
$\mathrm{C} 9-\mathrm{O} 2$	$1.42!(2)$		
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$122.69(19)$	$\mathrm{O} 1-\mathrm{C} 10-\mathrm{Cl1}$	$110.17(18)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$112.66(17)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$109.23(17)$
$\mathrm{C} 8-\mathrm{C}-\mathrm{C} 7$	$112.7(2)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 2$	$109.32(17)$
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{O} 1$	$110.62(15)$	$\mathrm{C} 12-\mathrm{O} 2-\mathrm{C} 9$	$109.91(15)$
$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 10$	$110.28(16)$		
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 9-\mathrm{O} 1$	$-2.7(3)$	$\mathrm{C} 12-\mathrm{O} 2-\mathrm{C} 9-\mathrm{O} 1$	$-64.3(2)$
$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 11$	$-57.9(2)$	$\mathrm{O} 2-\mathrm{C}-\mathrm{O} 1-\mathrm{C} 10$	$63.3(2)$
$\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$53.4(2)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C}-\mathrm{C} 8$	$-175.1(2)$
$\mathrm{C} 10-\mathrm{Cl1-C12-O2}$	$-54.1(2)$	$\mathrm{C} 5-\mathrm{C}-\mathrm{C} 7-\mathrm{C} 8$	$-77.6(2)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 2-\mathrm{C} 9$	$59.3(2)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$101.2(2)$

Symmetry code: (i) $1-x, 1-y, 1-z$.

Compound (II)

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$
$M_{r}=250.28$
Monoclinic
C2/c
$a=26.064(5) \AA$
$b=8.696$ (2) \AA
$c=11.943$ (2) \AA
$\beta=103.604$ (4) ${ }^{\circ}$
$V=2630.9(8) \AA^{3}$
$Z=8$
$D_{x}=1.264 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Bruker SMART-1000 CCD diffractometer
ω scans
Absorption correction: face-indexed numerical (Sheldrick, 1997)
$T_{\text {min }}=0.988, T_{\text {max }}=0.997$
6995 measured reflections
2453 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 638 reflections
$\theta=1.61-25.50^{\circ}$
$\mu=0.092 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Notched square plate
$0.17 \times 0.14 \times 0.03 \mathrm{~mm}$
Colorless

1007 reflections with

$$
I>2 \sigma(I)
$$

$R_{\text {int }}=0.077$
$\theta_{\text {max }}=25.50^{\circ}$
$h=-31 \rightarrow 31$
$k=-9 \rightarrow 10$
$l=-14 \rightarrow 12$
Intensity decay: $<2 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.077$
$S=0.72$
2453 reflections
163 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)\right.$

$$
\left.+\left(0.0190 F_{o}^{2}\right)^{2}\right]
$$

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (II)

O1-C8	1.448 (3)	O2-C10	1.441 (3)
O4-C14	1.442 (3)	$\mathrm{O} 3-\mathrm{Cl} 2$	1.430 (3)
C8-C9	1.515 (3)	O2-C7	1.409 (3)
C13-C14	1.512 (3)	O3-Cll	1.419 (2)
C9-C10	1.505 (3)	$\mathrm{OL}-\mathrm{C} 7$	1.416 (3)
C12-C13	1.506 (3)	O4-Cll	1.411 (2)
O1-C8-C9	109.9 (2)	$\mathrm{O} 3-\mathrm{Cl}_{2}-\mathrm{Cl} 3$	110.1 (2)
C8-C9-C10	108.7 (2)	$\mathrm{C} 12-\mathrm{Cl} 3-\mathrm{Cl} 4$	108.3 (2)
C9-C10-02	109.6 (2)	$\mathrm{C} 13-\mathrm{Cl} 4-\mathrm{O} 4$	110.2 (2)
C7-02-C10	110.9 (2)	$\mathrm{C} 14-\mathrm{O} 4-\mathrm{Cl1}$	110.7 (2)
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{Ol}$	111.5 (2)	$\mathrm{O} 4-\mathrm{Cll}-\mathrm{O} 3$	111.2 (2)
$\mathrm{C} 7-\mathrm{Ol}-\mathrm{C} 8$	111.3 (2)	$\mathrm{C} 11-\mathrm{O} 3-\mathrm{C} 12$	111.2 (2)
$\mathrm{C} 6-\mathrm{Cl}-\mathrm{C} 7-\mathrm{O}$	- 102.2 (3)	$\mathrm{C} 10-\mathrm{O} 2-\mathrm{C} 7-\mathrm{O}$	-61.5 (2)
$\mathrm{C} 6-\mathrm{Cl}-\mathrm{C} 7-\mathrm{O}_{2}$	19.1 (3)	O2-C7-O1-C8	60.1 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C11-03}$	-156.9 (2)	$\mathrm{Cl1}-\mathrm{O} 3-\mathrm{Cl} 2-\mathrm{Cl} 3$	58.4 (3)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 11-\mathrm{O} 4$	82.4 (3)	O3-C12-C13-C14	-54.7 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 11-\mathrm{O} 3$	25.7 (3)	$\mathrm{Cl} 2-\mathrm{Cl} 3-\mathrm{Cl} 4-\mathrm{O}$	54.5 (3)
C7-OI-C8-C9	-56.5 (3)	$\mathrm{C} 13-\mathrm{Cl} 4-\mathrm{O} 4-\mathrm{Cl1}$	-58.0 (3)
$\mathrm{O1-C8-C9-C10}$	54.2 (3)	$\mathrm{Cl} 4-\mathrm{O} 4-\mathrm{Cl1-03}$	60.9 (3)
C8-C9-C10-02	-55.5 (3)	$\mathrm{O} 4-\mathrm{Cl1}-\mathrm{O} 3-\mathrm{Cl} 2$	-61.4 (3)
C9			

For both compounds, the crystal-to-detector distance was 5.023 cm . Data were collected in groups of 606, 435, and 230 frames at ϕ settings of 0,90 , and 180°, respectively. Each exposure covered -0.3° in ω for 30 s for compound (I) and 20 s for compound (II). Crystals of compound (I), immersed in Krytox oil, were cut to appropriate dimensions with a razor. H atoms were placed at calculated positions and refined with a riding model (methylene $\mathrm{C}-\mathrm{H}=0.99$, methine $\mathrm{C}-\mathrm{H}=$ 1.00 and aromatic $\mathrm{C}-\mathrm{H}=0.95 \AA$). The $U_{\text {iso }}$ value for each H atom was set at 1.2 times the equivalent isotropic displacement value of the C atom to which it is attached.

For both compounds, data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINTPlus (Bruker, 1997); program(s) used to solve structures: SHELXS97 (Sheldrick, 1990); program(s) used to refine structures: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTLJPC (Sheldrick, 1997); software used to prepare material for publication: SHELXTL/PC.

The National Institutes of Health grant No. HL 13157 and an IMGIP fellowship supported this research.

[^0]
References

Bruker (1997). SMART and SAINT-Plus. Versions 5.101. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.

Clement, T. E., Nurco, D. J. \& Smith, K. M. (1998). Inorg. Chem. 37, 1150-1160.
De, A. \& Kitagawa, Y. (1991). Acta Cryst. C47, 2179-2181.
Gandour, R. D., Tirado-Rives, J. \& Fronczek, F. R. (1986). J. Org. Chem. 51, 1987-1991.
Kadish, K. M., Guo, N., Van Caemelbecke, E., Froiio, A., Paolesse, R., Monti, D., Tagliatesta, P., Boschi, T., Prodi, L., Balletta, F. \& Zaccheroni, N. (1998). Inorg. Chem. 37, 2358-2365.
Sessler, J. L., Johnson, M. R., Creager, S. E., Fettinger, J. C. \& Ibers, J. A. (1990). J. Am. Chem. Soc. 112, 9310-9329.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXTL/PC. Version 5.101. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.

Acta Cryst. (1999). C55, 1595-1598

Absolute configuration of isocurcumenol \dagger

Jan W. Bats ${ }^{a}$ and Stefan H. Öhlinger ${ }^{b}$
${ }^{a}$ Institut für Organische Chemie, Universität Frankfurt, Marie-Curie-Straße 11, D-60439 Frankfurt am Main, Germany, and ${ }^{b}$ Institut für Organische Chemie, Freie
Universität Berlin, Takustraße 3, D-14195 Berlin, Germany.
E-mail: bats@indy2.org.chemie.uni-frankfurt.de
(Received 15 February 1999; accepted 29 April 1999)

Abstract

The absolute configuration of isocurcumenol, $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ was determined as ($3 \alpha, 3 \mathrm{a} \alpha, 6 \alpha, 8 \mathrm{a} \beta$). The $\mathrm{C}=\mathrm{C}$ double bonds in the 5 -isopropylidene and 8 -methylene groups were confirmed. The molecules are arranged by intermolecular hydrogen bonds between the hydroxyl groups to form helices about 3_{2} screw axes.

Comment

Isocurcumenol is a sesquiterpene found in Curcuma sp. (Zingiberaceae). It was isolated from Curcuma zedoaria Roscoe (Hikino et al., 1969; Shiobara, Asakawa et al., 1985), but was also found in Curcuma kwangsiensis S. G. Lee \& C. F. Liang (Chen et al., 1983), Curcuma heyneana Valeton \& van Zijp (Firman, Kinoshita, Itai \& Sankawa, 1988; Firman, Kinoshita \& Sankawa, 1988), Curcuma aeruginosa Roxburgh (Zhang et al., 1986; Zwaving \& Bos, 1992), Curcuma cochinchinensis Gagnepain (Dung et al., 1996), Curcuma harmandii Gagnepain (Dung et al., 1997) and Curcuma phaeocaulis Valeton (Hou et al., 1997). Crystals which deposited from zedoary oil were first reported by Haensel
\dagger CAS Registry Number [24063-71-6]; CAS name: $3 S$-($3 \alpha, 3 \mathrm{a} \alpha, 6 \alpha,-$ $8 \mathrm{a} \beta$)-octahydro-3-methyl-8-methylene-5-(1-methylethylidene)-6H-3a, 6 -epoxyazulen-6-ol. IUPAC name: ($3 \alpha, 3 \mathrm{a} \alpha, 6 \alpha, 8 \mathrm{a} \beta$)-5-isopropylidene3 -methyl-8-methylene-3a,6-epoxyperhydroazulen-6-ol.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1202). Services for accessing these data are described at the back of the journal.

